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(3aS,4R,5R,6R,6aS)-2-Dimethylamino-3a,3,6,6a-tetrahydro-
4-hydroxy-6-hydroxymethyl-4 H-cyclopentimidazole-5-yl 2-
Acetamido-2-deoxy-B-D-glucopyranoside hydrochloride was
designed as a potential inhibitor against endoglycosidases like
lysozyme and chitinase, and was synthesized from N,N'-
diacetylchitobiose by a series of reactions including radical
cyclization of oxime ethers and cyclic guanidine-formation.

In the preceding paper,! we reported total synthesis of a
natural chitinase inhibitor, allosamidin 1,2 and have continued to
develop new chitinase inhibitors through a study of the
relationship between structure and inhibitory activity thereof.3
Nishimoto et al.4 found that a pseudodisaccharide 2 obtained by
acidic hydrolysis of a congener of 1 was a potent inhibitor against
the chitinase from a pathogenic yeast, Candida albicans. This
finding prompted us to design a novel pseudodisaccharide 3
containing N,N-dimethylguanidine as an inhibitor against an
endoglycosidase like the chitinase. The guanidine moiety> was
expected to show a stronger affinity for a carboxy! group in an
active site in the enzyme than the core structure of 2. We have
already disclosed a novel methodology employing
oligosaccharides as a key starting material to construct a
pseudooligosaccharide framework.6 Described herein is the
synthesis of 3 by this method including a first radical cyclization
reaction of disaccharide-derived oxime ethers 8.
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Chitobiose heptaacetate 41 was hydrolyzed, and then
benzylated with benzyl bromide, barium oxide and barium
hydroxide in N,N-dimethylformamide (DMF) to provide benzyl
ether 5, mp 217 °C (dec.), [a]p25 -32° (¢ 0.92),7 in 69% yield
(Scheme 1). Hydrolysis of § with N-bromosuccinimide in
aqueous tetrahydrofuran (THF) gave hemiacetal 6 in 70% yield.
This was condensed with O-benzyl hydroxylamine hydrochloride
in pyridine-CH,Cl, at room temperature (r.t.) to afford oxime
ethers 7, as an unseparable mixture of stereoisomers (85% yield;
anti/syn = 5/1 by NMR analyses). Upon treatment with chloro
phenylthionoformate in pyridine-CHCly, 7 provided
thiocarbonates 8 in 71% yield. The radical cyclization8 of 8 was
carried out with 4.0 equiv of tributyltin hydride (BuzSnH) and a
catalytic amount of azobis(isobutyronitrile) (AIBN) as an initiator
in toluene at 100~110 °C, giving desired hydroxylamine 9,
[a]p23 - 6.2° (¢ 0.41), as a major product (31%), along with
other three isomers {10, []p24 - 1.0° (¢ 0.75), (~2%), 11,

[o]p2 - 2.9° (¢ 0.42), (23%) and 12, [a]p2* - 9.6° (¢ 0.53),
(15%) }. The stereochemistry of each isomer, separated by silica
gel chromatography, was established by the NMR analyses
together with the difference NOE experiments and by chemical
derivations such as an acetonide formation. For example, in 9, a
strong NOE was observed for the signals of NHAc, NHOBn,
and Hg upon irradiation of Hs.9 Likewise, irradiation of Hj
caused enhancement of signal due to Hj. These data are
consistent with the assigned 1,2-cis:4,5-trans structure for 9.
The isomer ratio of the products derived from 8 was compared
with the result obtained with a monosaccharide.8b There was no
significant difference in the stereoselectivity at C-1 (1,2-cis vs.
1,2-trans). In the case of 1,2-frans isomers, however, an
increase of 4,5-cis selectivity on the cyclization of 8 was
observed; 4,5-cis / 4,5-trans = 61/39 (lit.8b 31/69). Simple
procedure and readily access from 4 made a moderate yield!0 of 9
no problem for further transformation.
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10: 1,2-cis, 4,5-Cis

11: 1,2-trans, 4,5-cis

12: 1,2-trans, 4,5-frans
Reagents and conditions: a) NaOMe, MeOH, rt, quant., then BnBr,
Ba(OH), - 7H,0, BaO, DMF, rt, 69%; b) NBS, aq. THF rt, 70%; c)
BnONH; - HCI, pyridine-CH;,Cly, rt, 81%; d) PhOCSCI, pyridine-
CH,Cly, rt, 71%; e) Bu3zSnH, AIBN, toluene, 100~110 °C, 31% for
9, ~2% for 10, 23% for 11, and 15% for 12.

Scheme 1.

Next phase in this synthesis was to construct a cyclic
guanidine moiety on the cyclopentane ring of 9. Attempts to
remove selectively acetyl and benzyloxy groups in the nitrogen
functions of this ring were unsuccessful. Therefore, we adopted
a stepwise procedure as follows (Scheme 2). Thus, 9 reacted
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Reagents and conditions: a) PhOCSCI, pyridine-CH,Cl, 1t, 74%:; b)
NaH, DMF, 0 °C, 81%; c¢) CH3]l, reflux, quant; d) Me;NH,tOAc,
120 °C, then aq. HCl, 69% for 16 and 12% for 17; ¢) Hp, 10%
Pd/C, EtOH-AcOH-H,0 (1:1:1), 81% from 16, 75% from 17.

Scheme 2.

with chloro phenylthionocarbonate in pyridine-CH,Cl», to
provide thiocarbonate 13, [at]p?3 +15° (¢ 0.87), in 74% yield.
When 13 was treated with sodium hydride in DMF, a cyclization
concomitant with de-N-acetylation took place to give thiourea 14,
[a]p?3 -10° (c 0.62), in 81% yield. A solution of 14 in methyl
iodide was heated under reflux to afford a mixture of
iminothioethers, 15, in high yield. This reacted smoothly with
dimethylammonium acetate at 120 °C under argon atmosphere,!!
followed by treatment with hydrochloric acid, giving guanidine
hydrochloride 16, [a]p24 -15° (¢ 0.53, CH,Cly), in 69 % yield
along with its N-benzyloxy derivative 17 (12%). Finally, all
benzyl groups in 16 were removed by hydrogenation in the
presence of 10% palladium on carbon under hydrogen
atmosphere in acetic acid-ethanol-water to give 3, [al]p24 +13° (¢
0.20, H,0), in high yield. Similarly, 17 was also converted into
3. The bioassay of 3 for lysozyme and chitinase is under
investigation.

In conclusion, the facile synthesis of a novel
pseudodisaccharide 3 without glycosidation reaction was
achieved employing chitobiose as a key starting material.
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